Optimizing Detection Dog Performance: Addressing the Factors of Psychology, Metabolism and Structure

> Robert L. Gillette, DVM, MSE Veterinary & Consulting Services SportsVet.com k9care@sportsvet.com

Applying Sports Medicine Concepts to Canine Work Activities

- Detection Work
- Acknowledging the Psychological Effectors
- Addressing Psychological Stressors
- Metabolic Conditioning
- Prevent Injury and Structural Breakdown

The Optimal Hunt or Search Applying Science to Optimize Activity

- Two parts
 - Environmental Searching Conditions
 - Detection Abilities of the Dog

If we have an off day we tend to blame the conditions when sometimes it could be the dogs

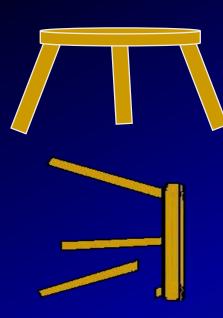
Rule of Three

- One "off" day could just be an off-day
- Two consecutive "off" days, may want to monitor dog
- Three or more "off" days, the dog should be evaluated to confirm metabolic or structural factors are not involved

Optimizing Canine Performance Factors that Affect Performance

Internal Factors

- Anatomical
- Physiological
- Psychological



External Factors

- Environment
- Dog interaction
- Handler
- Functional Demands
- Design and Boundaries of Event

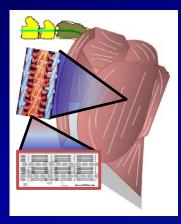
Internal Factors of Canine Performance

3 P's

Canine Performance is like a Three-Legged Stool.

- One leg is *body soundness*
- Second leg is body conditioning
- Third leg is *drive to perform*.
- If any one of the three is missing or dysfunctional, the stool is no good or does not function properly.

Canine Performance Impediments What's Going to Hold Us Back


Complexity of Canine Activity

This is what is going on

Structural

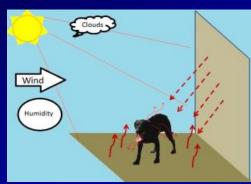
Physiological

Humidity

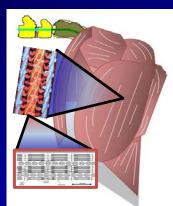
External

Robert L. Gillette, DVM, MSE, DACVSMR

This is what you see


Complexity of Canine Activity

This is what is going on



Structural

Physiological

External Robert L. Gillette, DVM, MSE, DACVSMR

Mental

This is what you see

Psychological Stresses & Performance

- The excitement and the conditioning of dogs bred and trained for athletic activities affect the metabolism of the Canine Athlete or Working Dog
- This <u>Psychological</u> factor will affect the <u>Physiological</u> state of the dog
 - Fatigue
 - Performance Abilities
- Retriever, Foxhound and Sled Dog studies

Gillette and Angle (2011) Journal of Applied Animal Behavior

Reward or Incentive Excitement

Secondary

- Dog is rewarded for performing the task
- Ball Drive
 - Dog performs task to receive reward

Primary

- Dog wants to perform task
- Performing task is reward

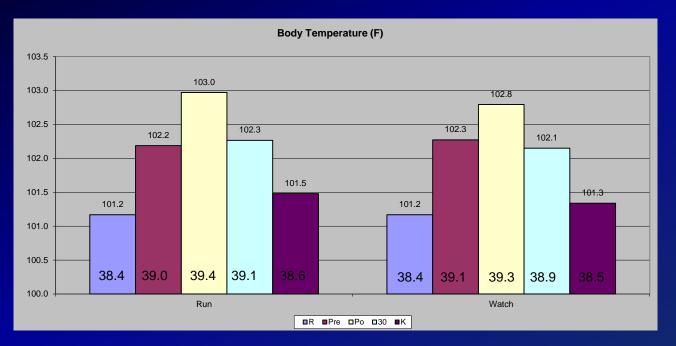
Purpose Bred for Task Performed

- Dogs not specifically bred or trained for the performance activity being tested would not be as psychologically stimulated to perform the task.
- These factors should be considered in studies of athletic canine performance.

TPR and Excitement

- One Greyhound ran over the sprint path while the other was held to watch the run
- The Greyhounds were split into two groups and paired by gender and size
- One group watched the activity while the other group ran. The next day the groups were switched.
- The Greyhounds ran four times over a two week period.
- The five time points of capture were:
 - Rest (24 hr prior
 - pre-exercise (pre),
 - immediate post-exercise (po)
 - 30 minutes post exercise (30min)
 - Kennel (60-90 min)

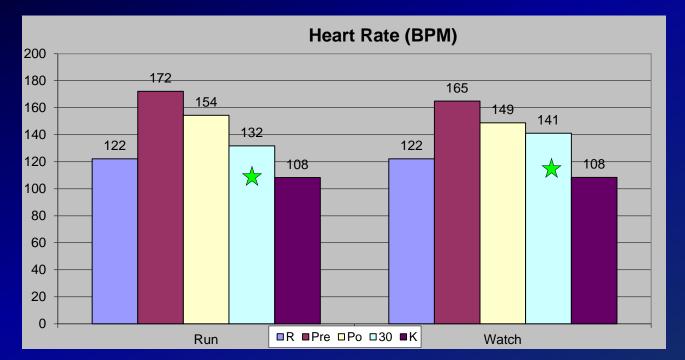
Study Design



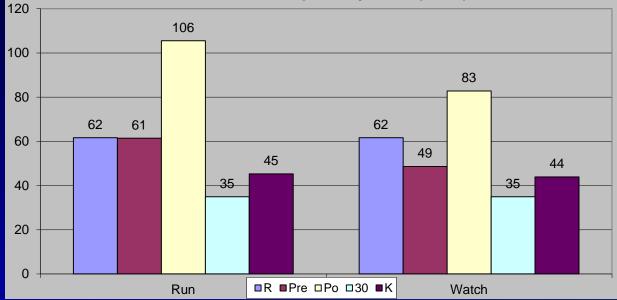
Run vs Watch

Run vs Watch Values

Rectal Temperature (°F)



Run vs Watch Values Heart Rate (BPM)



Run vs Watch Values

Respiratory Rate (BPM)

Respiratory Rate (BPM)

Performance

Psychology and Physiology
 Very important relationship in the Athletic and working dog.

Psycho/Social

- The excitement of dogs for athletic activities affect the metabolism of the Canine Athlete or Working Dog.
- Conversely dogs in new or abnormal settings may not be excited or may be fearful
 - Fatigue
 - Performance Abilities
- Dog/Animal interaction will be a factor

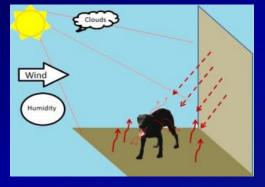
DeLuca, D. C., Murphree, O. D., & Angel, C. (1974). Biochemistry of nervous dogs. The Pavlovian journal of biological science: official journal of the Pavlovian, 9(3), 136-148.

Dog/Handler Variances Dog/Dog Issues

Psycho/Social

Acclimation or Socialization

- Develop Routine
 - Maintaining a routine helps provide some normality in abnormal situations
- Social Experience
 - Helps to acclimate dog
 - Helps handler to understand dog's reactions
- Leash or Control
 - Behavior Control will change in new environment & experiences


Complexity of Canine Activity

This is what is going on

Structural

Physiological

External

Mental Robert L. Gillette, DVM, MSE, DACVSMR

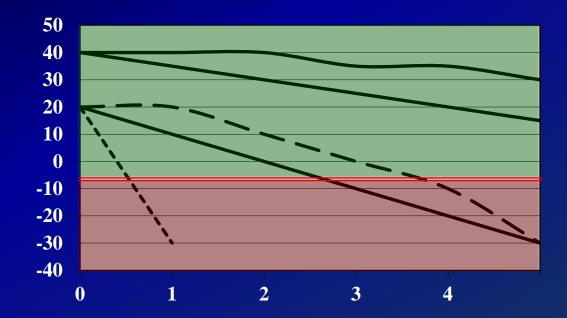

This is what you see

The Body's Systems work together for life and action

The systems of the body need to work together in a harmonious manner

- Bones provide structure
- Muscles act to move the structure
- Nerves stimulate movement
- Others manage the body's metabolic state during activity
 - Hormones, Respiratory, Kidney, Cardiovascular, GI

Health and Conditioning

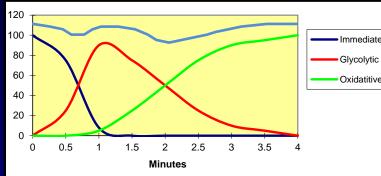

- When the dog is conditioned properly to perform an event, its energy and thoughts are focused towards performing the tasks of the event.
- Dogs that are not conditioned properly must deal with the affects of fatigue.
 - They are not mentally focused on their tasks, which limits their ability to perform.
 - As the body becomes fatigued it has an increased risk of injury.

Minimizing Metabolic Damage Avoid Negative Metabolism

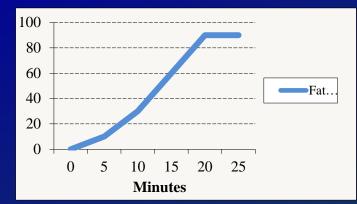
- Work Amount
 - Hi EnergyLow Energy
- Work Time
 - Period
 - Day
 - Consecutive

Career

Categories of Activity

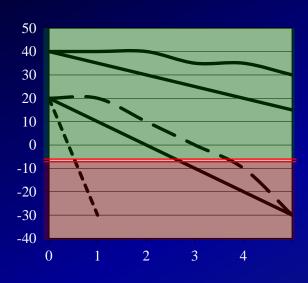


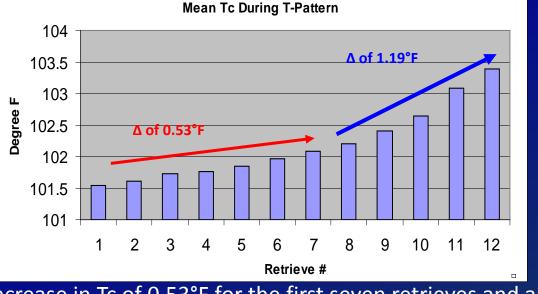
- Strength / Power
 - Short Duration
 - < 2 minutes
 - Performed at maximal or supramaximal intensities



- Endurance
 - Long Duration
 - Longer than 2 minutes
 - Performed at intensities less than 90% maximal aerobic power (VO2 max)

Energy Contributions During Exercise



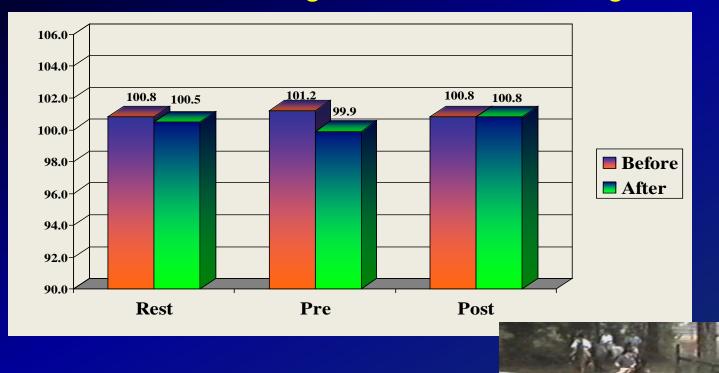


Metabolic Fatigue Point Retrieving Exercise

Mean Tc after each retrieve during the 72 m retrieve (144 m).

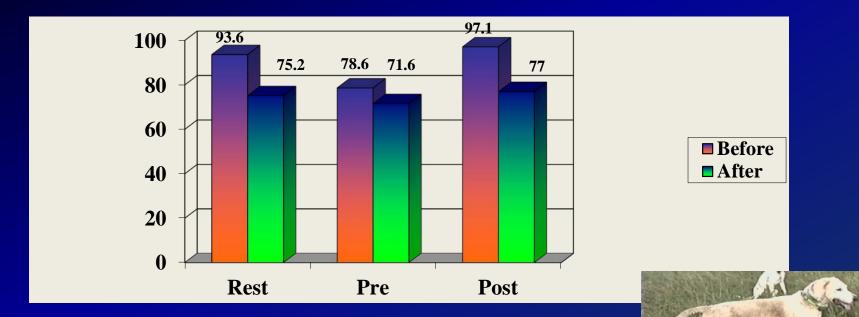
Increase in Tc of 0.53°F for the first seven retrieves and an increase of 1.19°F for the last five retrieves.

Training and Conditioning Analysis of the Foxhound


Before

						_					
B-Pre	NS-Rest	NS-Pre	NS-Post	R-Pr	Pr-Po	A-Post	NS-Rest	NS-Pre	NS-Post	R-Pr	Pr-Po
Glucose	89.5	90.6	77.7				100.9	107.5	96.2		_
Urea Nit	22.1	21.8	23.1				23.4	23.5	18.6		
Creat	1.3	1.2	1.3				1.2	1.2	1.2		
TP	7.4	6.9	6.9	4			7.2	7.5	7.0	4	
Albumin	3.3	3.2	3.3				3.3	3.4	3.2		
Bili Tot	0.1	0.1	0.2				0.1	0.1	0.1		
AP	23.0	21.0	13.9				48.8	38.0	49.1	þ	
ALT	31.5	29.3	45.2				39.6	47.7	49.2		
AST	39.7	37.5	103.6				35.3	33.9	37.3		
Cholest	158.3	155.7	153.5				171.1	175.5	162.8		
Calcium	10.0	9.4	9.2	4			9.7	10.1	9.5	4	-
Phosph	4.0	4.4	3.9				3.9	3.6	4.0		
Sodium	148.7	147.9	146.6				144.8	148.5	144.3		
Potassium	4.3	4.3	3.9		4		4.2	4.4	4.0		
Chloride	114.4	111.9	110.5				111.6	110.7	111.0		
A/G	0.8	0.9	1.0				0.9	0.9	0.9		
Bun/Creat	16.3	16.6	16.8				18.8	18.1	14.1		
Globulin	4.1	3.7	3.6	4			3.9	4.1	3.8		
Lipase	224.6	226.4	174.9		-		219.5	195.9	205.0	4	
Amylase	740.8	767.0	833.6				639.3	681.2	645.3		
Triglyc	21.3	31.7	33.7	(35.3	39.1	30.0		
СРК	131.2	107.0	652.7				129.2	83.8	121.6	-	
GGTP	4.5	6.1	1.4				3.1	4.1	1.9		
Mag	1.6	1.7	1.6				1.6	1.9	1.6		_
Osmol	297.4	296.7	292.4		4		291.2	298.7	287.8		
Corr Calc	9.5	9.1	8.8				10.1	10.1	9.9		
СРК	131.2	107.0	652.7				9.3	10.3	10.0		
Cortisol	0.8	1.3	3.2				1.4	1.3	0.6		
Insulin	2.2	0.7	0.1				1.5	2.6	0.4		

After



Body Temperature Related to Conditioning Pre-Conditioning Versus Post-Conditioning

Heart Rate Related to Conditioning

Pre-Conditioning Versus Post-Conditioning

Sled Dog Field Study

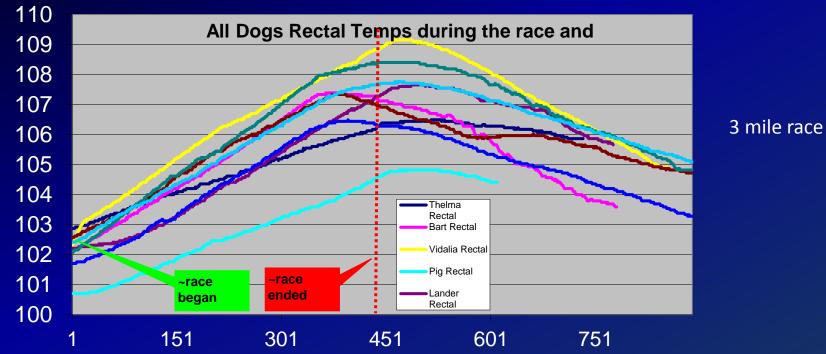
Field Studies in the Training Sled Dog Gillette, Angle, Adkins & Geske

Cond	В	A		В	A		В	А	
Blood Parameter	Rest	Rest		Pre	Pre		Post	Post	
Hemaglobin	17.394	17.411		16.73	16.94		17.14	16.89	
Hematocrit	53.23	56.30		52.27	52.92		52.37	52.98	
WBC	12.06111	8.955556		10.64	8.62		10.09	8.75	
RBC	7.40	7.49		7.38	7.27		7.29	7.28	
MCV	72.00	75.22	1	70.94	72.94		72.00	72.76	
МСН	23.52	23.27		22.69	23.29	1	23.54	34.98	
МСНС	32.66	30.96		32.01	32.04		32.71	32.01	
Platlet Count	246.17	287.67		269.17	305.94		276.21	316.94	
Neutrophils	6979.22	5161.44		6043.56	5076.89		5601.07	5319.00	
Lymphocytes	2892.17	2244.28		2655.89	1993.28		2950.21	1867.59	Ţ
Monocytes	382.89	265.89		342.17	247.17		238.36	252.71	
Eosinophils	1776.39	1256.44		1602.83	1220.78		1230.36	1296.94	
Basophils	35.44	27.50		0.00	61.22		65.71	28.47	

- The affects of Conditioning
- CBC Values

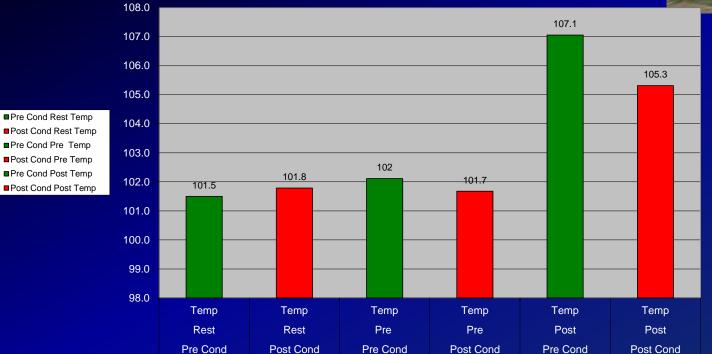
Sled Dog Field Study

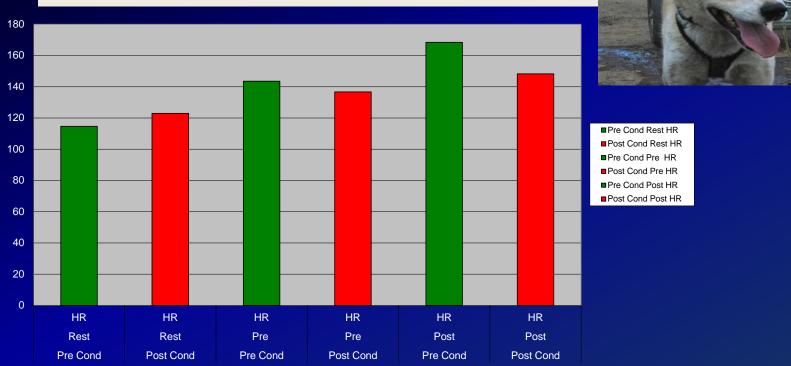
Gillette, Angle, Adkins & Geske


Cond	B A			B A		B A			
Blood Parameter	Rest Rest			Pre Pre			Post Post		
Glucose	104.00	98.56		100.11	83.56		174.86	215.67	
Urea Nitrogen	17.83	21.67		17.06	21.61		18.71	20.61	
Creatinine	0.99	0.97		1.06	0.91		1.34	1.16	
Total Protien	7.23	7.36		7.17	7.48		6.94	7.11	
Albumin	3.61	3.31		3.68	3.99	1	3.63	3.13	
Total Bilirubin	0.10	0.10		0.11	0.12		0.11	0.12	
Alkaline Phosphata	: 41.39	46.06		36.46	36.44		44.57	45.44	
ALT(SGPT)	43.94	50.83		42.33	47.50		45.14	49.17	
AST(SGOT)	33.17	36.28		33.72	29.28		38.71	42.22	
Cholesterol	196.78	193.00		195.39	203.94		194.43	181.28	
Calcium	9.68	9.64		9.53	10.51	1	8.51	9.42	
Phoshorous	3.77	3.81		3.73	3.50		3.32	3.42	
Sodium	145.83	148.89	1	147.56	150.72	1	146.57	147.61	
к	4.61	4.58		4.77	4.71		4.69	4.40	
CL	113.11	111.83		112.89	116.83	1	111.86	111.78	
Albumin/Globulin/R	a 1.07	0.86		1.14	1.26		1.17	0.84	
BUN/Creatinine Rat	i 18.22	22.50		16.39	25.17		14.14	18.17	
Globulin	3.62	4.05		3.48	3.49		3.31	3.97	
Lipase	483.89	535.17		493.50	552.06		486.57	516.33	
Amylase	462.50	404.11		469.50	407.67		435.07	387.67	
Triglycerides	50.00	45.33		50.56	34.39		68.29	56.89	
СРК	79.06	100.72		81.67	102.89		93.86	125.56	
GGTP	7.87	6.27		6.00	7.09		6.00	6.17	
Magnesium	1.80	1.82		1.76	1.78		1.64	1.79	
Calculated Osmolal	291.94	283.61		294.94	301.44		297.64	302.11	
Corrected Calcium	8.70	9.92		9.83	11.00		8.62	9.77	
СРК	79.06	100.72		81.67	102.89		93.86	125.56	
Cortisol	1.69	1.68		3.31	3.68		6.66	5.60	
Insulin	3.87	4.46	1	2.90	3.53		5.31	3.60	
Ratio	5.33	6.44		4.09	6.67		4.60	2.88	
Glucose	104.00	98.56		100.11	83.29	ļ	174.86	215.67	
Glucose	104.00								
T4		2.18							

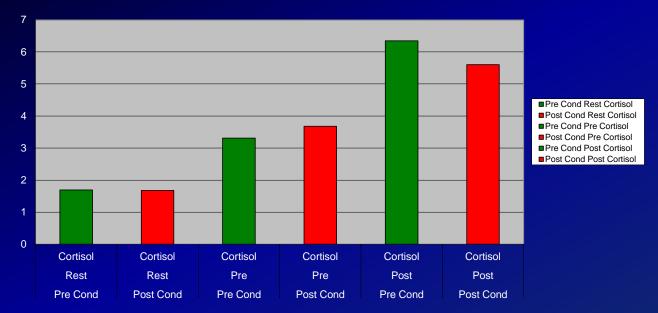
Chem Values

Physiological Factors Sled Dog Working Body Temps

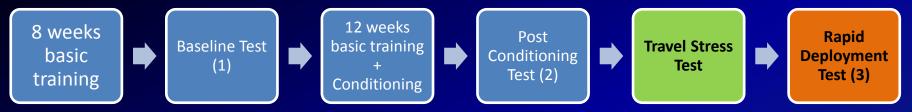



Pre Cond vs. Post Cond Temp

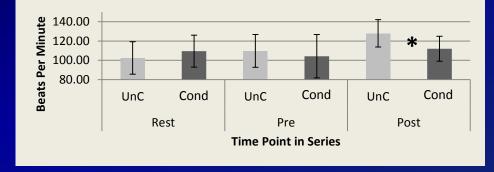
Pre Cond vs. Post Cond Temp

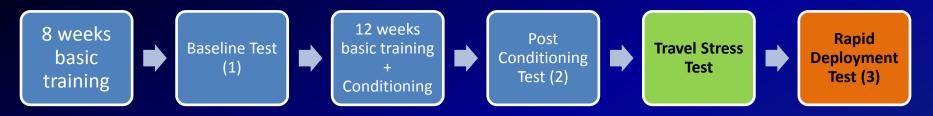


Pre Cond vs. Post Cond HR



Pre Cond vs. Post Cond Cortisol


Pre Cond vs. Post Cond Cortisol


Conditioning and Travel Stress

Conditioning and Rapid Deployment Test

Parameter	Conditioned	Unconditioned
# of targets located (42 g, AN/SP)	120 /131	95 /103
% targets found (NS)	93.9 ± 6.5 %	90.9 ± 16.4 %
No Finds	11	8
No Find: change in behavior	0	0
No Find: dog walked by aid	11	8
No Find: dog not in area	0	0
Search Time (NS)	2105 ± 797 seconds	1721 ± 736 seconds
Search Distance (NS)	2.5 ± 0.8 km	2.24 ± 0.9 km

Note: Non sig due to small sample size

The Effects of Conditioning and Fat supplementation in a Pack of Foxhounds

B-Pre

Glucose

Urea Nit

Albumin

Bili Tot

Creat

ΤР

AP

ALT

AST

Cholest

Calcium

Phosph

Sodium Potassiur

Chloride

Bun/Crea

Globulin

Amylase

Triglyc

CPK

GGTP

Maq

CPK

Cortisol

Insulin

Osmol

Corr Calc

Lipase

A/G

S-Rest

94.8

19.7

1.2

7.6

3.2

0.1

19.8

36.7

38.3

155.2

10.2

4.1

146.8

113.6

4.4

0.8

16.3

4.4

286.6

880.4

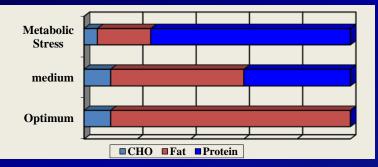
21.9

3.2

1.6

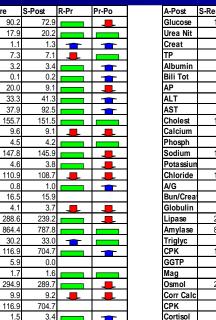
116.7

294.3


10.5

108.8

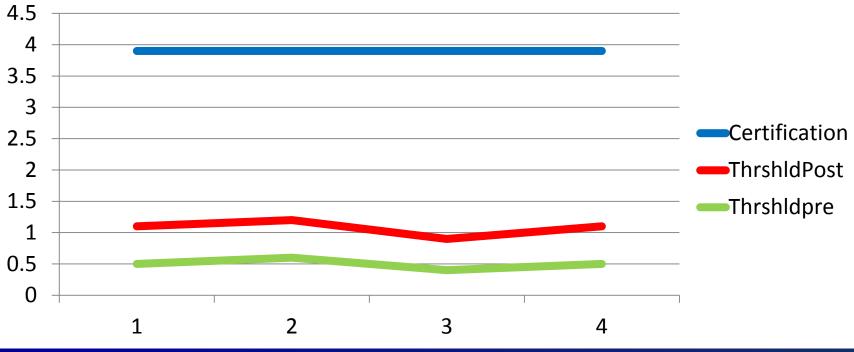
1.3


1.8

- Fat Supplements
 - Animal Fat
 - Corn Oil

S-Pre

Po-S


_					
A-Post	S-Rest	S-Pre	S-Post	R-Pr	Pr-Po
Glucose	108.2	110.8	103.0		
Urea Nit	23.7	19.0	13.2		
Creat	1.1	1.1	1.1		
TP	7.5	7.2	7.0		
Albumin	3.3	3.2	3.3		
Bili Tot	0.1	0.1	0.1		
AP	38.0	42.6	54.8		
ALT	34.7	35.7	37.4		
AST	33.8	34.1	33.4		
Cholest	153.4	151.0	152.1		
Calcium	10.0	9.5	9.5		
Phosph	4.3	4.0	3.8		
Sodium	145.4	144.8	145.0		
Potassium	4.3	4.3	4.0		4
Chloride	110.2	111.0	111.4		
A/G	0.8	0.8	0.9		
Bun/Creat	21.7	16.7	11.8		
Globulin	4.2	3.9	3.8		
Lipase	270.9	297.0	253.1		
Amylase	834.3	818.7	827.7		
Triglyc	51.3	37.9	42.3		
CPK	131.1	195.9	154.3		
GGTP	1.4	2.4	2.7		
Mag	1.7	1.6	1.5		
Osmol	292.9	290.0	287.4		
Corr Calc	10.3	9.7	9.7		
CPK	10.3	9.7	9.7		
Cortisol	1.0	1.0	0.8		
Insulin	5.9	3.5	0.2		

P<0.05

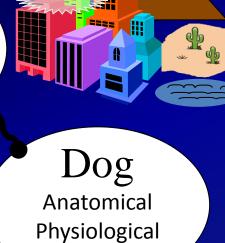
0.4

0.0

Effects of Exercise on Scent Recognition

Angle, et al, (2014). The effects of exercise and diet on olfactory capability in detection dogs

Diet, Exercise, and Detection

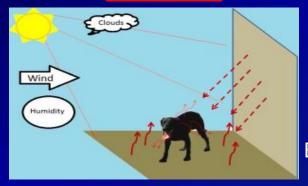

- Dogs were 1.42 (1.082 1.87) times as likely to find a target on the CO diet relative to the HF diet (p = 0.0099)
 CO > HF
- Dogs were 1.49 (1.26 1.76) times as likely to find a target PRIOR to exercise relative to after exercise (p < 0.0001)
 Pre > Po
- There was no significant effect of TPR on the probability of finding the target (p > 0.25693)
 TPR ≠ Finds
- Dogs on LF had higher Blood Cortisol levels than HF and CO (p < 0.05)

Angle, C. T., Wakshlag, J. J., Gillette, R. L., Steury, T., Haney, P., Barrett, J., & Fisher, T. (2014). The effects of exercise and diet on olfactory capability in detection dogs. Journal of nutritional science, 3.

The Handler & Dog Becoming a Team

Connected vs Unconnected

Psychological


- Train to be one
- Handler Factors
 - Dog Factors
- Interactive variances
 - Social
 - Climate
 - Terrain

Man/Dog Anatomical Physiological Psychological

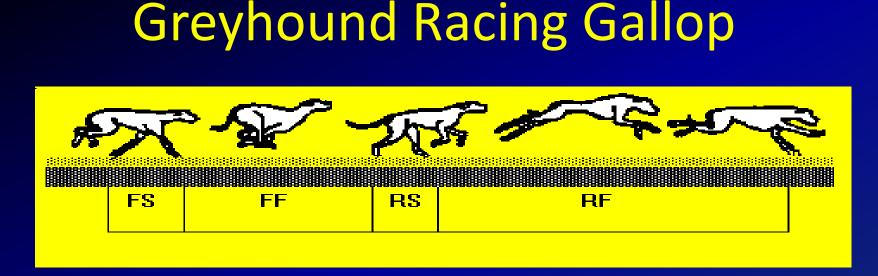
Structural Action and Energy

Structural


Physiological

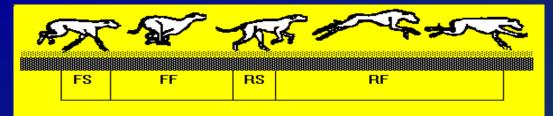
External Mental Robert L. Gillette, DVM, MSE, DACVSMR This is what you see

Structural Soundness and Performance Distal Limbs

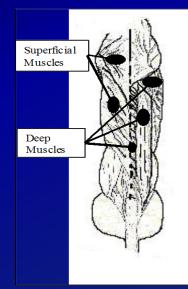


Biomechanical Components

Whole Body Stressors & Segmental Stressors Whole Body Fatigue & Segmental Fatigue


Segmental Variation

- The Racing Gallop is a double-suspension rotary gallop
- Phases of the stride: Front Support (FS), Front Flight (FF), Rear Support (RS), Rear Flight (RF).


Factors of Fatigue

Parameter	Beginning	End	Significant
Velocity	16.45 m/s	14.58 m/s	S
Stride Freq	3.25 str/s	2.82 str/s	S
Stride Lngth	5.06 m	5.17 m	NS
Tot Sp Time	0.187 s	0.225 s	S
Tot Flt Time	0.122 s	0.130 s	NS
Ft Flt Dist	1.23 m	1.42	S
Rr Flt Dist	2.50 m	2.32 m	S

Kinematic Factors of Fatigue

- Stride length had no significant change
- Rear flight distance decreases & front flight distance increases
- Fatigue occurs in the vertebral muscles
 - Longissimus muscles

Normal Forces of Activity

- Propulsion of the Rear Limbs
- Lift of the Paravertebral Muscles
- Energy transfer of the front limbs
- Energy absorption of the front limbs

Normal Forces of Activity

- Dogs are active and will be exposed to various physical forces
- Minimize unneeded injuries
- Prepare the musculoskeletal structure to handle the rigors of work
- Will decrease deleterious stresses and injuries

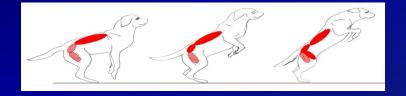
Preparing the Canine Structure

Wolff's Law

Bone in a healthy person or animal will adapt to the loads under which it is placed.

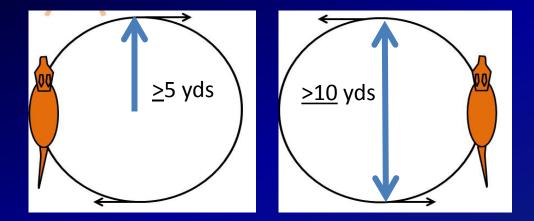
Davis's Law

The related soft tissue in a healthy person or animal will adapt to the load under which it is placed



Structural Preparation

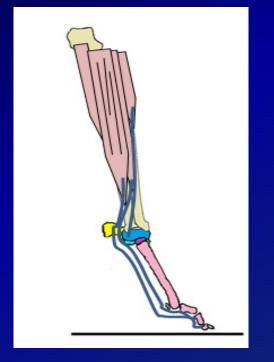
Increase Speed Prepare Structure

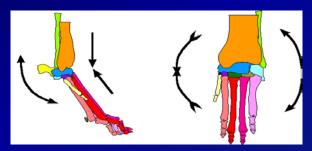




- Speed Factors
 - Stride Length
 - Stride Frequency*
- Exercises
 - Uphill work
 - Hurdles Tight Distance
 - Wet Sand Sprints
- Physical Conditioning
 - Circular activity
 - Large Figure 8's
 - Loping Speeds
 - Sand work
 - Soft Sand (Leash?)
 - Loping Speeds

Structural Preparation


Turning:

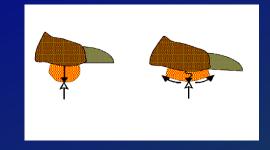

- Lunging or Figure 8's
- Loping Speeds

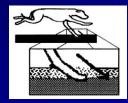
Condition the Structure

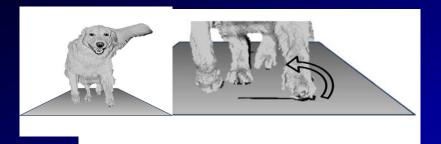
- Understand
 - Activities
 - Inactivity
 - Workload
 - Environment
 - Surface

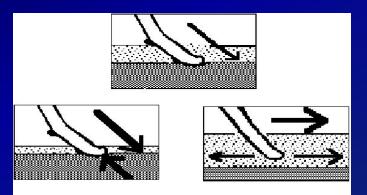
Distal Muscles

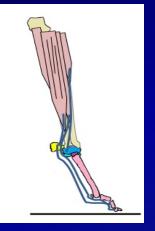
Paw Injuries


Prevention

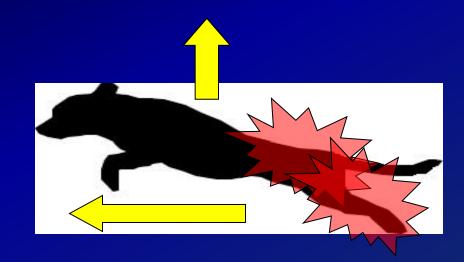






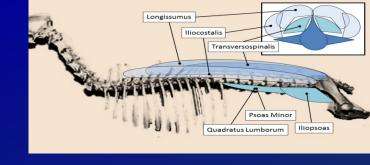


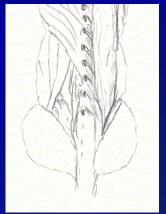
Structural Preparation



Grass or Sand (wet or soft)

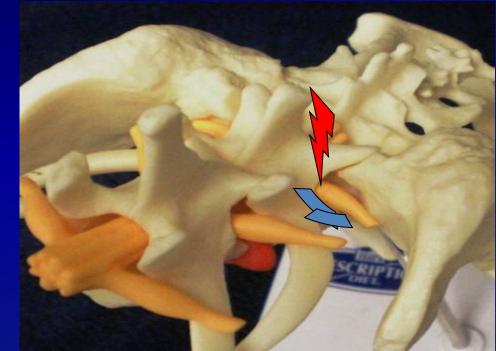
• Be careful in soft sand


Lumbo-Sacral Issues****


- Jumping Issues
- Pain
- Intensity related
 - Drive
 - Obedience vs
 Protection work
- Age

Muscle Soreness in Lower Back

- Secondary/Tertiary Inflammation and Pain
- Epaxial and Hypaxial Muscles
- IVDD
- Nerve Root
- Treatments
 - Meds
 - Laser
 - E-Stim



Lumbosacral Pain

Fibrous tissue growth around the nerves creates nerve impingement This create nerve pain

Don't Forget Muscles or IV joint Pain

Tick Borne Pathogens in Detection Dogs and Patrol Dogs

- Athletic and Working Dogs are exposed to various pathogens
- Subclinical pathology
- Off performance or reduced endurance

- Ehrlichiosis
- Rocky Mountain Spotted Fever
- Lymes
- Anaplasmosis

Optimizing Detection Dog Performance: Addressing the Factors of Psychology, Metabolism and Structure

> Robert L. Gillette, DVM, MSE, DACVSMR Veterinary & Consulting Services SportsVet.com k9care@sportsvet.com

